The deforming Nazca slab in the mantle transition zone and lower mantle: Constraints from teleseismic tomography on the deeply subducted slab between 6°S and 32°S
نویسندگان
چکیده
We present new tomographic models of the Nazca slab under South America from 6°S to 32°S, and from 95 km to lower mantle (895 km) depths. By combining data from 14 separate networks in the central Andes, we use finite-frequency teleseismic P-wave tomography to image the Nazca slab from the upper mantle into the mantle transition zone (MTZ) and the uppermost lower mantle on a regional scale. Our tomography shows that there is significant along-strike variation in the morphology of the Nazca slab in the MTZ and the lower mantle. Thickening of the slab in the MTZ is observed north of the Bolivian orocline, possibly related to buckling or folding of the slab in response to the penetration of a near-vertical slab into the higher-viscosity lower mantle, which decreases the sinking velocity of the slab. South of the orocline, the slab continues into the lower mantle with only minor deformation in the MTZ. In the lower mantle, a similar difference in morphology is observed. North of 16°S, the slab anomaly in the lower mantle is more coherent and penetrates more steeply into the lower mantle. To the south, the slab dip appears to be decreasing just below the 660 km discontinuity. This change in slab morphology in the MTZ and lower mantle appears to correspond to the change in the dip of the slab as it enters the MTZ, from steeply dipping in the north to more moderately dipping in the south.
منابع مشابه
Mantle layering across central South America
[1] Imaging of seismic velocity discontinuities along a 3000 km profile across central South America at 20 S suggests that the depth variations of the 410-km (d410) and 660-km (d660) discontinuities are closely associated with the high-velocity Nazca slab and juxtaposed low-velocity oceanic mantle beneath the slab. The mantle transition zone thickness ranges from 220 km in the oceanic mantle to...
متن کاملModels of Mantle Convection Incorporating Plate Tectonics: The Australian Region since the Cretaceous
We propose that the anomalous Cretaceous vertical motion of Australia and distinctive geochemistry and geophysics of the Australian-Antarctic Discordance (AAD) were caused by a subducted slab which migrated beneath the continent during the Cretaceous, stalled within the mantle transition zone, and is presently being drawn up by the Southeast Indian Ridge. During the Early Cretaceous the eastern...
متن کاملInternal deformation of the subducted Nazca slab inferred from seismic anisotropy
Withinoceanic lithospherea fossilized fabric is oftenpreserved originating from the time of plate formation. Such fabric is thought to form at the mid-ocean ridge when olivine crystals align with the direction of plate spreading1,2. It is unclear, however, whether this fossil fabric is preserved within slabs during subduction or overprinted by subduction-induced deformation. The alignment of ol...
متن کاملThe crust and uppermost mantle structure of Southern Peru from ambient noise and earthquake surface wave analysis
a r t i c l e i n f o a b s t r a c t Southern Peru is located in the northern Central Andes, which is the highest plateau along an active subduction zone. In this region, the Nazca slab changes from normal to flat subduction, with the associated Holocene volcanism ceasing above the flat subduction regime. We use 6 s to 67 s period surface wave signals from ambient noise cross-correlations and ...
متن کاملShear wave tomography of China using joint inversion of body and surface wave constraints
[1] The India-Eurasia collision and the decratonization of the North China Craton have drawn much attention from the scientific community. Here we provide the first large-scale S wave velocity model for China (CH11-S) based on constraints from both teleseismic surface and body waves. We take advantage of the recent deployment of the 140 permanent stations of the Chinese Digital Seismic Network ...
متن کامل